Gas Transport in Solid Oxide Fuel Cells
Preface

The ultimate goal of this book is to provide an integrated view of the basic theory, materials science, and engineering of gas transport in solid oxide fuel cells (SOFCs). Further, this book will provide an invaluable, contemporary reference for the development of fundamental theory and experiment, advanced experimental measurement techniques, and industrial applications of gas diffusivity in solid oxide fuel cells.

Interest in fuel cell technologies has been motivated by their function: directly converting stored chemical energy into electrical energy without combustion and emission of pollutants, such as nitrogen oxides (N\textsubscript{x}O\textsubscript{y}). These devices can overcome combustion efficiency limitations since the operation of fuel cells does not necessarily involve the Carnot cycle, thus reducing the emission of pollutants. Compared with other types of fuel cells, solid oxide fuel cells have shown clear advantages over other systems, since hydrogen, hydrocarbons, carbon monoxide, and carbon can be utilized as constituent fuels. The major disadvantage of SOFCs is their high operation temperature, which can reach 1000 °C. At such high temperatures, few materials can function effectively as electrolytes or electrodes. This feature of SOFCs increases their operation and fabrication costs, and hinders their application in rapidly developing areas of application, such as in portable power and automobile power device applications. The impedance of SOFCs, including the activation and concentration polarizations of electrodes and the Ohmic loss of electrolytes, increases sharply with decreasing operating temperatures. To reduce the impedance, fundamental comprehension of the mechanism of gas diffusion through the electrode and that of gas transport between the electrode and the electrolyte is necessary. Mechanisms and mathematical models of gas diffusion are discussed in detail in the first chapter of this book.

Several techniques for directly measuring gaseous diffusivity have been developed in recent years. These techniques allow gas transport coefficients to be accurately evaluated. The results of these measurements help to optimize the configuration of solid oxide fuel cells, including the surface properties of electrodes and the structure of electrodes and electrolytes, as well as the techniques for preparing electrolytes. Recent theoretical and experimental advancements in these measurement techniques are discussed in the middle chapters of this book.
Gas diffusivity of electrodes in solid oxide fuel cells drops rapidly with reducing operation temperatures. This loss of diffusivity cannot be compensated through the optimization of the configuration of the fuel cell. Therefore, the key to lowering the operation temperature of solid oxide fuel cells is the development of high-efficiency electrodes. The role of gas diffusivity measurement techniques in the exploration of novel electrode materials are also explored in the middle chapters of this book. Then, the book focuses on the strategies of realizing advanced solid oxide fuel cells with improved gas transport. This chapter presents an overview of novel porous electrode materials, and the techniques allowing for the rational design of electrode microstructure with highly efficient gas transport parameters, including porosity, tortuosity, etc. Finally, an outlook on research and development of low-temperature solid oxide fuel cells is presented.
The authors are grateful to those who provided generous help and encouragement during the writing of the book. We are grateful to and cordially acknowledge these individuals, a limited number of whom are listed as follows:

Prof. Qi Huang, School of Energy Science and Engineering, University of Electronic Science and Technology of China, PR China;
Ms. Jiangwei Li, Department of Literature and Journalism, Sichuan University, PR China;
Ms. Yinghua Niu, School of Chemical Engineering, Harbin Institute of Technology, PR China;
Mr. Chengyun Yang, Heolo Technology Corporation, PR China;
Prof. John B. Goodenough, Texas Material Institute and Materials Science and Engineering Program, University of Texas at Austin, US;
Dr. Kelvin HL Zhang, University of Oxford, UK and Pacific Northwest National Laboratory, US;
Dr. Wayne P. Hess, Pacific Northwest National Laboratory, US;
Dr. Zhenjun Li, Pacific Northwest National Laboratory, US;
Dr. Junghwon Park, UC Berkeley and Harvard University, US;
Dr. Bin Wang, Vanderbilt University and University of Oklahoma, US;
Dr. Junhao Lin, Vanderbilt University and Oak Ridge National Laboratory, US.
Contents

1 Introduction to Gas Transport in Solid Oxide Fuel Cells 1
 1.1 Introduction to SOFCs ... 1
 1.1.1 Brief History of SOFC Development 1
 1.1.2 Principles of SOFCs ... 2
 1.1.3 Energy Losses in SOFCs 4
 1.2 Gas Transport in SOFCs .. 6
 1.2.1 General Consideration 6
 1.2.2 The Driving Force of Gas Diffusion
 in Electrodes—Concentration Gradient 7
 1.2.3 Gas Transport in the Porous Electrodes 7
 References ... 8

2 Gas Diffusion Mechanisms and Models 9
 2.1 Gas Diffusion in Porous Media 9
 2.1.1 General Consideration 9
 2.1.2 Molecular Diffusion 10
 2.1.3 Knudsen Diffusion 11
 2.2 Gas Diffusion in Porous Electrodes of Solid Oxide Fuel Cells .. 14
 2.2.1 Advective–Diffusive Model 14
 2.2.2 Maxwell–Stefan Model 14
 2.2.3 Dusty Gas Model ... 15
 2.2.4 Effective Gas Diffusion Model 16
 References ... 16

3 Diffusivity Measurement Techniques 19
 3.1 Diffusivity Measurement in Porous Media 19
 3.2 Advanced Diffusivity Measurement Techniques in Solid
 Oxide Fuel Cells .. 22
3.3 The Role of Advanced Diffusivity Measurement Techniques in Exploring Highly Efficient Solid Oxide Fuel Cell Electrodes
3.3.1 Correlations Between the Diffusivity and Concentration Polarization ... 27
3.3.2 Correlations Between Concentration Polarization and Structures of Anodes/Cathodes 29
3.4 Quantity Analysis of Measurement Error of the Diffusivity and Concentration Polarization 31
3.4.1 Current Error ... 31
3.4.2 Pressure Error .. 36
3.4.3 Temperature Error .. 39
References ... 42

4 Solid Oxide Fuel Cells with Improved Gas Transport .. 45
4.1 Introduction .. 45
4.2 Brief Review of SOFC Electrode Materials ... 46
4.3 Synthesis Methodology for Microstructure Control of SOFC Electrodes .. 48
4.4 Characterization Techniques of Microstructures of SOFC Electrodes .. 51
4.5 Correlations between Electrode Microstructures and SOFC Mass Transport 53
4.5.1 I–V Curve Fitting .. 54
4.5.2 Electrochemical Impedance Spectra ... 60
4.5.3 Theoretical Simulations .. 63
4.6 Summary .. 64
References ... 65

5 Conclusions and Trajectories for the Future .. 71

Index .. 75